Invariant Measures for Set-Valued Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Entropy measures and granularity measures for set-valued information systems
Set-valued information systems are generalized models of single-valued information systems. In this paper, we propose two new relations for set-valued information systems. Based on these two relations, the concepts of knowledge information entropy, knowledge rough entropy, knowledge granulation and knowledge granularity measure are defined in set-valued information systems, and some properties ...
متن کاملRobust Control of Set-Valued Discrete-Time Dynamical Systems
This paper presents results obtained for the control of set-valued discrete-time dynamical systems. Such systems model nonlinear systems subject to persistent bounded noise. A robust control problem for such systems is introduced. The problem is formulated as a dynamic game, wherein the controller plays against the set-valued system. Both necessary and sufficient conditions in terms of (station...
متن کاملApproximating Physical Invariant Measures of Mixing Dynamical Systems
Invariant measures of higher dimensional transformations are hard to calculate. We present new results on the estimation of absolutely continous invariant measures of mixing transformations , including a new method of proof of Ulam's conjecture. The method involves constructing nite matrix approximations to the Perron-Frobenius operator from increasingly ner partitions of the state space X. We ...
متن کاملOn the computation of invariant measures in random dynamical systems
Invariant measures of dynamical systems generated e. g. by difference equations can be computed by discretizing the originally continuum state space, and replacing the action of the generator by the transition mechanism of a Markov chain. In fact they are approximated by stationary vectors of these Markov chains. Here we extend this well known approximation result and the underlying algorithm t...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1999
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-99-02424-1